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Introduction 

This document provides the background knowledge on the non-ordinary state-based peridynamic (NOSB-

PD) theory in the discretized form. Refer to [1-10] for further formulations and their derivatives. Due to the 

convenient introduction of traditional constitutive models, the NOSB-PD has great advantages in material 

nonlinear analysis and fracture simulation, and has attracted broad attention in the computational fracture 

mechanics community 

 

Non-Ordinary State-Based Peridynamics (NOSB-PD) vs Bond-Based Peridynamics (BB-PD)  

The balance of linear momentum in peridynamics takes an integral form, whereas partial derivatives are 

used in the classical continuum mechanics. Therefore, the equation of motion in peridynamics valid 

everywhere in the material despite of presence of discontinuities such as cracks. The peridynamics (PD) 

discretize the material body into a defined number of points, and the kinetics of materials is represented by 

the bonds between the points. During the early development of peridynamics, the bond-based peridynamics 

(BB-PD) is developed where the kinetic energy of a given point xi is obtained by a summation of forces 

from bonds between the point 𝐱𝒊 and each point in a finite distance (referred to as “Horizon) as shown in 

Fig. 1a. In the development of NOSB-PD, however, the kinetics of point 𝐱𝒊 is not only a function of bond 

relationships with points within its horizon (𝐻𝑖) but also depends on bonds in the horizon of point 𝐱𝒋  (𝐻𝑗) 

as shown in Fig. 1b. The adjustment enables NOSB-PD to capture material response with any Poisson’s 

ratio [1] by allowing interactions between bonds.  

 

(a)                                            (b) 

Figure 1. Peridynamic bonds: (a) BB-PD vs. (b) NOSB-PD. 

 

 NOSB-PD Formulation  

The kinematics of peridynamics for a two-dimensional body is illustrated in Fig. 2. A point located at 

position 𝐱𝒊 interacts with its surrounding points within an area of influence, the so-called “horizon”, where 

𝛿 is the horizon size. In NOSB-PD, vector-states are introduced to describe the kinematics of the body (see 

Fig. 2). The position vector-state 𝐗, also called the bond 𝛏, from the perspective of 𝐱𝒊, is defined as the 

relative position of 𝐱𝒊 and 𝐱𝒋 in the reference configuration B0.  

 𝐗〈𝐱𝒋 − 𝐱𝒊〉 = 𝛏𝒊𝒋 = 𝐱𝒋 − 𝐱𝒊 (1) 

The deformation vector-state, Y, represents the bond in the deformed body B.  

 𝐘〈𝐱𝒋 − 𝐱𝒊〉 = 𝛏𝒊𝒋 + 𝛈𝒊𝒋 = 𝐲𝒋 − 𝐲𝒊 (2) 

where 𝐲𝒊 = 𝐱𝒊 + 𝐮𝒊 and 𝐲𝒋 = 𝐱𝒋 + 𝐮𝒋. 𝐮𝒊 and 𝐮𝒋 are deformations corresponding to 𝐱𝒊 and 𝐱𝒋 , respectively. 

𝛈𝒊𝒋 = 𝐮𝒋 − 𝐮𝒊 is the relative deformation.  Note that the angle bracket, 〈 〉, is used to indicate that the state 

operates on the vector in 〈 〉. Also, indices indicate the correspondence of a variable to material points, 𝐀𝒊 
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denotes the state 𝐀  at point 𝐱𝒊 , or 𝐀𝒊𝒋 corresponds to the bond between 𝐱𝒊 and 𝐱𝒋. In NOSB-PD, the 

deformation vector-state, 𝐘, takes the role of deformation gradient tensor, 𝐅, in classical local mechanics in 

describing kinematics of the body [21, 23]. Silling [23] introduced an approximation for evaluating the 

classical deformation gradient tensor in order to incorporate the classical constitutive equations in NOSB-

PD.  

 𝐅𝒊 = [∑ 𝜔𝒊𝒋(𝐲𝒋 − 𝐲𝒊)⨂(𝐱𝒋 − 𝐱𝒊)𝑉𝒋
𝒏𝒊
𝒋=𝟏 ] . 𝐊𝒊

−𝟏 (3) 

where 𝜔𝑖𝑗 = 𝜔(|𝛏𝒊𝒋|) denotes an influence function, 𝒏𝒊 is the number of points within the horizon of 𝐱𝒊, 

and 𝑉𝒋 is the volume of point 𝐱𝒋. 𝐊𝒊 is shape tensor, expressed as follows at point 𝐱𝒊.  

 𝐊𝒊 = ∑ 𝜔𝑖𝑗(𝐱𝒋 − 𝐱𝒊)⨂(𝐱𝒋 − 𝐱𝒊)𝑉𝒋
𝒏𝒊
𝒋=𝟏  (4) 

 

 

Figure 2. Peridynamic states: Position vector-state 𝐗, deformation vector-state 𝐘, and force vector-state 𝐓.  

 

In NOSB-PD, it is assumed that points interact through long-range forces represented by force vector-

state 𝐓 [23]. The steady-state equilibrium equations for point 𝐱𝒊 is given by summation of force vector-

states over the horizon of 𝐱𝒊  

 𝐊𝒊 = ∑ {𝐓𝒊〈𝐱𝒋 − 𝐱𝒊〉 − 𝐓𝒋〈𝐱𝒊 − 𝐱𝒋〉}𝑉𝒋
𝒏𝒊
𝒋=𝟏 + 𝐛𝒊 = 𝟎 (5) 

where 𝐛 is the body force. The force vector-state is obtained from 

 𝐓𝒊〈𝐱𝒋 − 𝐱𝒊〉 = 𝜔𝑖𝑗𝛔𝑖𝐊𝒊
−𝟏(𝐱𝒋 − 𝐱𝒊) (6) 

where 𝛔 is the first Piola-Kirchhoff stress and determined through material constitutive equation. 

 

Force vector-state  

The discretization of force vector-state is provided by Breitenfeld et al. [19], and Yaghoobi and Chorzepa 

[21]. This study presents a modified formulation for 2D plane stress and 3D problems. For linearly elastic 

materials with small deformations, the infinitesimal strain tensor 𝛆 = 0.5(𝐅𝑇 + 𝐅) − 𝐈 can be rewritten by 

definition of peridynamic deformation gradient tensor (Eq. 3) as  

 𝛆𝒊 = 0.5 [∑ 𝜔𝒊𝒋{(𝐮𝒋 − 𝐮𝒊)⨂(𝐱𝒋 − 𝐱𝒊) + (𝐱𝒋 − 𝐱𝒊)⨂(𝐮𝒋 − 𝐮𝒊)}𝑉𝒋
𝒏𝒊
𝒋=𝟏 ] . 𝐊𝒊

−𝟏 (7) 

The infinitesimal strain tensor in vector (or Voigt) notation takes the following form,  
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 𝛆𝒊 = 𝐊𝒊
∗ ∑ 𝜔𝒊𝒋𝐍𝒊𝒋𝐔𝒊𝒋𝑉𝒋

𝒏𝒊
𝒋=𝟏  (8) 

where for a 2D problem, 𝐊∗ is a 3×4 matrix and stores the arrays of inverse of shape tensor 𝐊.  

 𝐊∗ = [

𝐾11
−1 0 𝐾12

−1 0

0 𝐾12
−1 0 𝐾22

−1

𝐾12
−1 𝐾11

−1 𝐾22
−1 𝐾12

−1

]     (2D) (9) 

In 3D, 𝐊∗ is a 6×9 matrix. 

 𝐊∗ =

[
 
 
 
 
 
 
𝐾11

−1 0 0 𝐾21
−1 0 0 𝐾31

−1 0 0

0 𝐾12
−1 0 0 𝐾22

−1 0 0 𝐾32
−1 0

0 0 𝐾13
−1 0 0 𝐾23

−1 0 0 𝐾33
−1

0 𝐾13
−1 𝐾12

−1 0 𝐾23
−1 𝐾22

−1 0 𝐾33
−1 𝐾32

−1

𝐾13
−1 0 𝐾11

−1 𝐾23
−1 0 𝐾21

−1 𝐾33
−1 0 𝐾31

−1

𝐾12
−1 𝐾11

−1 0 𝐾22
−1 𝐾21

−1 0 𝐾32
−1 𝐾31

−1 0 ]
 
 
 
 
 
 

     (3D) (10) 

N is a 4 × 2 matrix for 2D problem and 9 × 3 for a 3D problem which formed from elements of position 

vector-state 𝛏𝒊𝒋 = 𝐱𝒋 − 𝐱𝒊 = [ξ1, ξ2] for 2D and [ξ1, ξ2, ξ3] for 3D, as show below: 

 𝐍 = [

ξ1 0
0 ξ1
ξ2 0
0 ξ2

]    (2D)   and   𝐍 =

[
 
 
 
 
 
 
 
 
 
ξ1 0 0
0 ξ1 0
0 0 ξ1
ξ2 0 0
0 ξ2 0
0 0 ξ2
ξ3 0 0
0 ξ3 0
0 0 ξ3]

 
 
 
 
 
 
 
 
 

    (3D) (11) 

and 𝐔𝒊𝒋 = 𝐮𝒋 − 𝐮𝒊 is the relative deformation vector. For a linear elastic material, the constitutive equation 

defined as 

 𝛔 = 𝐂 ∶  𝛆 (12) 

where 𝐂 is the isotropic elastic moduli matrix. To retrieve the term 𝐊𝒊
−𝟏(𝐱𝒋 − 𝐱𝒊) in Eq. (6), 𝐐∗ is defined 

as  

 𝐐∗ = [
𝑄1 0 𝑄2

0 𝑄2 𝑄1
]    (2D) (13) 

 𝐐∗ = [

𝑄1 0 0 0 𝑄3 𝑄2

0 𝑄2 0 𝑄3 0 𝑄1

0 0 𝑄3 𝑄2 𝑄1 0
]    (3D) (14) 

where 𝐐𝒊𝒋 = 𝐊𝒊
−𝟏(𝐱𝒋 − 𝐱𝒊) = [𝑄1, 𝑄2] for 2D and [𝑄1, 𝑄2, 𝑄3] for 3D. Finally, the force vectorstate is 

obtained by  

 𝐓𝒊〈𝐱𝒋 − 𝐱𝒊〉 = 𝜔𝑖𝑗𝐐𝒊𝒋
∗ 𝛔𝑖 (15) 

 

Zero-Energy Mode 

NOSB-PD suffers from an instability problem, known as a “zero-energy mode” mechanism [39,42]. It is 

mainly observed in regions with high strain gradients. The term “zero-energy mode” associated with 
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reference to the Finite Element Analysis (FEA) refers to a nodal displacement vector that is not a rigid-

body motion, yet produces zero strain energy. Instabilities arise because of weak-form element formulation 

processes such as the use of a low-order Gauss quadrature rule. Certain higher-order polynomial terms 

vanish at Gauss points, thus eliminating these terms from contribution to the system stiffness [43, 44]. 

In the context of peridynamics, the zero-energy mode is associated to a weak coupling of material 

points with their surrounding points and thus results in oscillations in the deformation and stress fields. The 

zero-energy mode is also present in the other available meshfree methods such as smoothed particle 

hydrodynamics (SPH) and element-free Galerkin method (EFG). 

The definition of the zero-energy mode has been given by Breitenfeld et al. [39] and described herein. 

Consider a rigid-body with a deformation vector-state, 𝐘, and its approximate deformation gradient tensor 

of 𝐅. For an interior point 𝐱, away from the boundaries, a symmetric horizon provides ∫ 𝜔(|𝝃|)𝝃𝑑𝑉𝐱′ = 0
𝐻𝐱

. 

While holding all other points fixed, an arbitrary displacement, �̂�, in the point 𝐱, yields a new deformation 

state of 𝐘(𝛏) = 𝐘(𝛏) − �̂�. The corresponding approximate deformation gradient tensor, �̂�, is obtained by 

 �̂� = 𝐅 − �̂�⨂(∫ 𝜔(|𝝃|)𝝃𝑑𝑉𝐱′
𝐻𝐱

) . 𝐊−1 = 𝐅 (16) 

This indicates that the arbitrary displacement, �̂�, results in no strain energy as calculated by the 

approximate deformation gradient tensor presented in Eq. (16). The presence of the zero-energy modes 

results in fictitious solutions (e.g., oscillations in the stress and strain fields) that are not physically 

explained. Therefore, the zero-energy mode may affect the failure and damage pattern. There are a few 

methods to alleviate this problem. Decreasing the particle spacing is one of available treatments which may 

reduce the zero-energy mode oscillations. For dynamic problems, providing artificial viscosity in the 

NOSB-PD equation of motion is also mentioned to alleviate the zero-energy mode oscillations [45]. 

However, another level of effort is required to significantly reduce the undesired oscillations. Several other 

methods have been developed by Littlewood [46], Breitenfeld et al. [39], and Wu and Ren [47] to suppress 

the zero-energy mode.  

The methods developed by Littlewood [46] and Breitenfeld et al. [39] share the fundamental notion 

that a supplementary force introduced into the force vector-state in peridynamics (𝐓𝑍𝐸 in Eq. 17) can relieve 

the zero-energy mode, although the definition of the supplementary forces vary in their models. Littlewood 

[46] defined a penalty term based on differences between the actual position of each particle and its 

numerical position predicted by the nonlocal deformation gradient tensor. Therefore, the supplementary 

force is defined proportional to the penalty term. Breitenfeld et al. [39] introduced two approaches for the 

supplementary term. In the first approach, the extra force is proportional to the relative displacement of the 

bond, whereas in the second approach, it is proportional to the averaged displacement of all other particles 

in the horizon. 

 𝐓𝒊〈𝐱𝒋 − 𝐱𝒊〉 = 𝜔𝑖𝑗𝛔𝑖𝐊𝒊
−𝟏(𝐱𝒋 − 𝐱𝒊) + 𝐓𝑍𝐸〈𝐱𝒋 − 𝐱𝒊〉  (17) 

Breitenfeld et al. [39] listed three possible forms for the 𝐓𝑍𝐸〈𝐱𝒋 − 𝐱𝒊〉 as below, where 𝐶𝐼 , 𝐶𝐼𝐼 and 𝐶𝐼𝐼𝐼 

are constants and required to be obtained. 𝐾 is the bulk modulus and 𝐡 =  (𝐅 −  𝐈)(𝐱𝑗 − 𝐱𝑖) − (𝐮𝑗 − 𝐮𝑖) 

is the hourglass vector. 

 𝐓𝑍𝐸〈𝐱𝑗 − 𝐱𝑖〉 = 𝐶𝐼𝜔𝑖𝑗(𝐮𝑗 − 𝐮𝑖)   (18) 

 𝐓𝑍𝐸〈𝐱𝑗 − 𝐱𝑖〉 = 𝐶𝐼𝐼 ∑ 𝜔𝑖𝑘(𝐮𝑘 − 𝐮𝑖)𝑉𝑘
𝑛𝑖
𝑗=1    (19) 

 𝐓𝑍𝐸〈𝐱𝑗 − 𝐱𝑖〉 = −𝐶𝐼𝐼𝐼 (
18𝐾

𝜋𝛿4)𝐡. (𝐲𝑗 − 𝐲𝑖)
𝐲𝑗−𝐲𝑖

|𝐲𝑗−𝐲𝑖|
2 𝑉𝑖𝑉𝑗   (20) 

These expressions introduce a spring-like bond forces to give an additional coupling of a material point 

with its neighboring points. In the first method (Eq. 18), the spring-like bond force is calculated simply as 
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a function of relative displacement of the bond. In the second method (Eq. 19), the average of relative 

displacement over all bonds around the point is used in calculation of the force. In the third form (Eq. 20) 

originally developed by Littlewood [46], the additional force vector-state term is based on the penalty term. 

It is noteworthy that the performance of each method is highly dependent on the spring coefficients, 𝐶𝐼 , 

𝐶𝐼𝐼 and 𝐶𝐼𝐼𝐼. Evidently, it becomes ineffective to use a very small spring coefficient in controlling zero-

energy mode. On the other hand, for too large spring coefficients, the spring force dominates the solution 

[39], and it can lead to a numerical divergence. Therefore, an optimum value of the spring coefficient needs 

to be adjusted based on material model and the discretization scheme such as point spacing and horizon 

size, and the shape of a weight function. As a result, multiple attempts are required to determine a suitable 

spring coefficient for each problem. 

Wu and Ren [47] introduced a control method for suppressing zero-energy mode by replacing the 

deformation field, 𝐮𝑖, by the stabilized displacement field, �̅�𝑖, defined by Eq. (21), where �̅�𝑖𝑗 is the modified 

weight function and takes the form of normalized weight function as shown in Eq. (22). 

  �̅�𝑖 = ∑ �̅�𝑖𝑗𝐮𝑗𝑉𝑗
𝑛𝑖
𝑗=1    (21) 

 �̅�𝑖𝑗 =
𝜔𝑖𝑗

∑ 𝜔𝑖𝑘𝑉𝑘
𝑛𝑖
𝑗=1

   (22) 

The stabilized displacement of each particle is determined by providing weighted average displacement 

of all other particles and yields reduced oscillations in the deformation field. The approach eliminated the 

need to obtain the spring coefficient. However unfortunately, the oscillation problem remains in the strain 

and stress fields with the Wu and Ren model. 

Yaghoobi and Chorpeza [17] proposed a method where higher order terms are contained in the 

formulation by using certain influence functions. Tupek and Radovitzky [18] proposed using different strain 

measures in the model. 

Other types of solutions to the instability issues have been proposed such as the stress-point method 

[19] and the scheme by Chowdhury et al. [20]. A stabilization type that has been explored in recent times 

is stabilization by bond association, where kinematic quantities are associated to PD bonds instead of the 

PD material points. The bond-level stabilization [21], and the bond-associated stabilization [22,23] show 

the effectiveness of this type of stabilization technique. 

In particular, the bond-associated stabilization, by Chen et al. [22,23] has shown very good performance 

in stabilizing the solutions in an inherent way, without tuning parameters. Moreover, the implementation is 

quite straightforward. The deformation gradient and force state are computed for each bond, and are 

therefore called bond-associated deformation gradient and bond-associated force state. The method has 

been applied in the context of the weak form of peridynamics for linear elastic models [24], in hyperelastic 

material models with rupture [25–27], in concrete spalling computations [28], as well as in multiphysics 

problems, such as the linear piezoelectricity PD implementation [29]. Also, the wave dispersion property 

of the model has also been subject of study in [30]. 
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