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Introduction

In the peridynamics theory, failure modes such as damage or crack nucleation, coalescence, and propagation
are associated with bond breakage between material points.

Critical Stretch

A bond can break if its stretch, s, exceeds a critical stretch, s,. The critical stretch can be obtained
experimentally. Furthermore, Silling and Askari [2] represented a formulation to calculate the critical
stretch by comparing the fracture energy of the material, G,, with the total energy required to generate a
fracture surface within the horizon of a material point. The simplest way to introduce failure into
peridynamic formulation is to modify the weight function, w(|&|), introducing additional term to capture
the bond breakage as follows:

a(lg = {*UE) s <s )

0 otherwise

Critical Energy Density

A failure criterion for breaking the physical bonds between material points in the NOSB-PD formulation
was proposed by Foster et al. [37]. This criterion gives the threshold (or critical) energy density, wg, such
that a bond breakage occurs when the amount of energy density stored in a bond, wg, reaches the threshold.
As a consequence, there is no physical interaction between two material points. The energy density stored
in a bond is defined as

we = [{T[x](x' —x) — T[x'[(x — x')} - dny )

which resembles the well-known work or conservation of energy equation where the integration of forces
acting on a body over the travel distance (or path length) gives the work done by the external force. Noting
that n defines the relative displacement vector and is computed by u’ — u. The critical energy density can
be defined in terms of material properties and has been experimentally determined for a 2D body as follows
[37]:
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where the energy release rate, G, represents the energy required to open a new fracture surface of a unit
area. In this study, the weight function is modified as follows to implement the failure criterion:

a(lgy = {00 < ©

0 otherwise
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Classical Damage Models

NOSB-PD can adopt constitutive relationship and materials models conventionally used in the classical
continuum mechanics formulation. In this context, damage models from classical mechanics can be used.
In doing so, first a damage parameter, D, is defined for each material point based on the damage model.
The damage parameter is between 0 and 1, where 0 stands for not damaged point and 1 stands for fully
damaged point. The bond between two points, x and x’ is broken if D(x) = 0 and D(x") = 0.
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