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Introduction 

In the peridynamics theory, failure modes such as damage or crack nucleation, coalescence, and propagation 

are associated with bond breakage between material points.  

 

Critical Stretch  

A bond can break if its stretch, 𝑠, exceeds a critical stretch, 𝑠0. The critical stretch can be obtained 

experimentally. Furthermore, Silling and Askari [2] represented a formulation to calculate the critical 

stretch by comparing the fracture energy of the material, 𝐺0, with the total energy required to generate a 

fracture surface within the horizon of a material point. The simplest way to introduce failure into 

peridynamic formulation is to modify the weight function, 𝜔(|𝛏|), introducing additional term to capture 

the bond breakage as follows: 

 �̅�(|𝛏|) = {
𝜔(|𝛏|) 𝑠 < 𝑠0

0 otherwise
 (1) 

 

Critical Energy Density 

A failure criterion for breaking the physical bonds between material points in the NOSB-PD formulation 

was proposed by Foster et al. [37]. This criterion gives the threshold (or critical) energy density, 𝑤0, such 

that a bond breakage occurs when the amount of energy density stored in a bond, 𝑤𝛏, reaches the  threshold. 

As a consequence, there is no physical interaction between two material points. The energy density stored 

in a bond is defined as 

 𝑤𝛏 = ∫ {𝐓[𝐱]〈𝐱′ − 𝐱〉 − 𝐓[𝐱′]〈𝐱 − 𝐱′〉} ∙ d𝜼
𝜼

𝟎
 (2) 

which resembles the well-known work or conservation of energy equation where the integration of forces 

acting on a body over the travel distance (or path length) gives the work done by the external force. Noting 

that 𝜼 defines the relative displacement vector and is computed by 𝐮′ − 𝐮. The critical energy density can 

be defined in terms of material properties and has been experimentally determined for a 2D body as follows 

[37]: 

 𝑤0 =
3𝐺𝑓

ℎ𝛿3 (2) 

where the energy release rate, 𝐺𝑓, represents the energy required to open a new fracture surface of a unit 

area. In this study, the weight function is modified as follows to implement the failure criterion: 

 �̅�(|𝛏|) = {
𝜔(|𝛏|) 𝑤𝛏 < 𝑤0

0 otherwise
 (3) 

 

Classical Damage Models 

NOSB-PD can adopt constitutive relationship and materials models conventionally used in the classical 

continuum mechanics formulation. In this context, damage models from classical mechanics can be used. 

In doing so, first a damage parameter, D, is defined for each material point based on the damage model. 

The damage parameter is between 0 and 1, where 0 stands for not damaged point and 1 stands for fully 

damaged point. The bond between two points, 𝐱 and 𝐱′ is broken if 𝐷(𝐱) = 0 and 𝐷(𝐱′) = 0. 
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